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 Lecture 16 

The entropy is a lovely function because it is all we need to know in order to predict 

whether a process will be spontaneous.  However, it is often inconvenient to use, because to predict 

whether a process will be spontaneous, it is necessary to know the entropy change in both the 

system and the surroundings.  It would be convenient if we could define functions that could 

predict spontaneity by referring to the system alone. 

To do this let’s return to the second law.  The second law says “in a reversible process the 

entropy of the universe is constant; in an irreversible process, the entropy of the universe 

increases”.  We can express this mathematically as dS + dS' ≥ 0, where dS is the entropy change 

of the system, dS' is the entropy change of the surroundings and the sum equals zero only if the 

process is reversible.  Therefore, for spontaneous processes this becomes dS + dS' > 0. 

If the system and the surroundings are in thermal equilibrium at temperature T, we can 

write dS' = -dq/T, where dq is the heat transferred to the system.  Thus we can write our condition 

for an irreversible process as dS - dq/T > 0 or more generally as dS - dq/T ≥ 0.  This is a version 

of the Clausius inequality we saw earlier.  Note that already this inequality refers only to the 

system, since the first term is the entropy change of the system and the second term contains the 

heat transferred to the system.  But, and this is important, this is still the second law, so we are still 

predicting spontaneity, this time while referring only to the system. 

Now consider a constant volume system.  At constant volume, we have dqv = dU.  If we 

substitute this in our inequality it becomes dS - dU/T ≥ 0, which with little difficulty we can 

rearrange to TdS ≥ dU (constant V), which becomes the condition for the spontaneity of a process 

at constant volume.  To explore some of the consequences of this simple inequality, let's consider 
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the additional constraint of constant energy.  Then our equation becomes TdS ≥ 0 (Constant U, 

V) or dSU,V ≥ 0.  dS is only equal to zero for a reversible process, so this inequality tells us that at 

constant energy and volume, the entropy of the system increases for spontaneous processes.  Now 

let’s consider the situation where entropy is constant.  The inequality now becomes dUS,V < 0.  

In other words, if the entropy of the system and its volume are constant, the energy of the system 

must decrease for a process to be spontaneous.  This makes sense if we remember that the entropy 

of the universe must increase in order for a process to be spontaneous.  If the entropy change of 

the system is zero, then the entropy of the surroundings must increase.  If V is constant so that no 

expansion work can be done, the only way for the entropy of the surroundings to increase is if heat 

flows from the system to the surroundings, which reduces the energy of the system.  Hence dUS,V 

≤ 0. 

What happens to our original inequality, dS - dq/T ≥ 0, if the heat is transferred at constant 

pressure?  We know that dqp = dH, so this yields dS - dH/T ≥ 0 or TdS ≥ dH (constant p).  If we 

consider this inequality under conditions of constant enthalpy as well it reduces to dSH,P ≥ 0.  In 

other words, at constant pressure and enthalpy the entropy of the system increases for a 

spontaneous process.  At constant S, the inequality reduces to dHS,P ≤ 0. Q:  CAN ANYONE EXPLAIN 

WHY DHS,P < 0 FOR A SPONTANEOUS PROCESS?  [dStot > 0, dSsys = 0, Ssurr must be > 0, q flows to 

surroundings, so dH decreases] 

The essential content of these inequalities can be expressed by two new state functions.  

Note that our constant volume inequality can be expressed as dU - TdS ≤ 0, which leads to the 

definition of the first of our new state functions, the Hemholtz free energy, A ≡ U - TS.  For small 

changes of A its differential is dA = dU - d(TS), which under conditions of constant T becomes 
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dA = dU - TdS.  Comparing this to our constant volume inequality we see that dAT,V ≤ 0 is the 

constant V, constant T statement of the condition for spontaneity.   

Similarly our constant pressure inequality can be rewritten as dH - TdS ≤ 0, which leads to 

the definition of the Gibbs free energy as G = H - TS.  Q:  WHAT IS THE DIFFERENTIAL OF G? [dG 

= dH - d(TS).]  Under constant T this becomes dG = dH - TdS.  Comparison of this equation with 

the constant p inequality shows that at constant p, T, the condition for spontaneity is dGp,T ≤ 0. 

Let’s discuss the Hemholtz free energy and the Gibbs free energy in more detail.  We have 

shown that a process is spontaneous at constant volume and temperature if dA < 0.  In other words 

in a spontaneous process at constant volume and temperature the Hemholtz free energy of the 

system will decrease.  When does it stop decreasing?  To answer this lets consider a simple physical 

problem, a ball moving along a potential.  If we put the ball toward the top of the potential and 

release it, it moves spontaneously toward positions of lower potential energy, i.e.,  

 

 

 

dU < 0.  If we place it at the bottom of the potential surface, and we release it, the ball will not 

move and dU = 0, and we say the system is in equilibrium. 

This is not only the case for a simple potential like the one we've just considered.  Take 

this more complicated potential.  At positions A, B, C and D if we release a ball with no kinetic 

energy, it will remain stationary, dU will equal 0, and the ball will be in a mechanical equilibrium. 
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Now let’s return to the Hemholtz function.  If we have a spontaneous process at constant 

V and T, dA < 0.  For example, we could have a vessel containing air at 1.5 atm, where the 

surroundings are at 1.0 atm.  We allow air to leak out of the system.  If we let the process continue 

until it naturally stops, i.e. comes to equilibrium, then the pressures are equalized at 1 atm.  WHAT 

IS DA AT THE POINT WHERE WE REACH EQUILIBRIUM? 

To understand more about what dA tells us, let’s take our system now in equilibrium and 

push it in the same direction, loss of pressure.  Now the internal pressure is less than 1 atm.  The 

spontaneous process is now for air to leak back into the system, so dA < 0 for increasing pressure 

and by induction, dA > 0 for continuing to decrease the pressure.  In other words if we have a 

system out of equilibrium, and we use some process to approach equilibrium, dA < 0 for that 

process.  If we pass equilibrium dA > 0.  In other words, before equilibrium, dA < 0 and beyond 

equilibrium dA > 0.  Therefore, at equilibrium, dA must equal 0.  This in turn implies that when 

not in equilibrium dA for the spontaneous process is < 0 but as we approach equilibrium, dA 

approaches 0.  In other words, A behaves in a way analogous to the potential energy for the motion 

of a mechanical object.  Because A, G, H and U all behave in ways analogous to the potential 

energy, they are all called thermodynamic potentials. 

To clarify a final time, dA < 0 implies a spontaneous process at constant V, T and dA = 0 

at equilibrium for constant V, and T.  Remember that dA = dU - TdS < 0 for a spontaneous process.  

Therefore, at constant V and T spontaneous processes tend toward lower energy and higher 

entropy.  Remember, though, that in this equation, dU is a measure of spontaneity only because it 

reflects the entropy change in the surroundings at constant V, T, and that the statement dU - TdS 
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< 0 is exactly equivalent to the second law statement, “The entropy of the universe increases in a 

spontaneous process.”   

A has another meaning in addition to helping predict spontaneity under the appropriate 

conditions.  If we know dA for some process, or ∆A for some finite process, we know the 

maximum work the system can do.  Therefore we can write dA ⇒ -dwmax and ∆A ⇒ -wmax.  To 

show this let’s start by proving our earlier assertion that a system does its maximum work under 

reversible conditions.  We start with the Clausius inequality, dS - dq/T ≥ 0, remembering that the 

equality holds for a reversible process.  We can rearrange this to T dS ≥ dq and remembering that 

dq = dU - dw, this becomes T dS ≥ dU - dw.  We can rearrange this to -dw ≤ -dU + TdS which 

reduces to -dw ≤ -dA.  Since -dw, the work done by the system, is less than or equal to -dA, it 

follows that the maximum work occurs when -dw = -dA, i.e., -dwmax = -dA.  Remember though 

that -dw is only equal to -dA for a reversible process.  Therefore the maximum work is only 

achieved for reversible processes. 

Now let’s return to the Gibbs free energy.  Along with the enthalpy, the Gibbs free energy 

is the most important state function in chemistry.  We determined earlier that if dGT,P < 0 then a 

process will be spontaneous.  These conditions of constant pressure and temperature are clearly 

important for chemists, since most reactions are run under conditions of constant temperature and 

pressure.  Using the same reasoning that we used for the Hemholtz free energy, we find that if dG 

< 0 at constant T and P, the process will be spontaneous.  If dG > 0 at constant T and P, the reverse 

process will be spontaneous, and finally if dG = 0 the system will be under equilibrium with respect 

to the process.  Again as was the case with dA, as a process moves a system spontaneously toward 

equilibrium, dG moves toward 0. 
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An illustration of the importance of ∆G is the spontaneity of endothermic processes under 

some conditions.  Since ∆G = ∆H - T∆S, if ∆H > 0, ∆G can be less than 0 if ∆S > 0 and T is 

sufficiently high.   

Using ∆A we found that we could predict the maximum work done by a system.  This leads 

us to ask if there is something similar that we could learn from ∆G.  We begin with our differential 

of G under conditions of constant T, dG = dH - TdS.  We know that dH = dU + d(pV) = dw + dq 

+ d(pV).  The work term can be broken down into two components, expansion work, which is 

given by -pex dV, and nonexpansion work, which we will simply call dwe.  If we insert this in our 

equation for dG, and expand d(pV) we get 

dG = -pex dV + dwe + dq + p dV + V dp - T dS. 

For a reversible process, pex = p, and dq = TdS and dwe = dwe,max, so this simplifies to dG = dwe,max 

+ V dp.  Under conditions of constant pressure this finally simplifies to dG = dwe,max.  The reason 

for the subscript e in this case is historical – at the time Gibbs derived the properties of the Gibbs 

Free Energy, the most important kind of non-expansion work was electrochemical.  Hence the 

choice of subscript.  Note that as in the case of the Hemholtz free energy, if dG < 0, the implication 

is that dwe,max < 0 and the system is capable of doing non-expansion work.  If on the other hand 

dG > 0, then dwe,max > 0 and for a process to occur, work must be done on the system.   
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Lecture 17 

Remember that our definition of the Gibbs free energy is G = H - TS.  The Gibbs free 

energy is of interest to chemists because it predicts the spontaneity of reactions under conditions 

of constant temperature and pressure.  Of equal importance in chemistry is the condition dGp,T = 

0, since it allows us to relate the Gibbs free energy to conditions of equilibrium.  However before 

we can relate dG to equilibrium in ways that are useful to us, we need to further explore the nature 

of G, U, H, and A and learn ways to relate them.  This means in part a return to partial derivatives. 

Let’s begin by returning to our first thermodynamic potential, the energy.  Our earliest 

definition of energy change was dU = dq + dw.  In chapter 3 we showed that dqrev/T = dS or dqrev 

= TdS.  For a reversible process we also have dw = -p dV.  Substituting both of these in our 

equation for dU yields dU = TdS - pdV.  This is called the fundamental relation, because it defines 

dU strictly in terms of basic state functions, and because our other major state functions, H, G and 

A are all defined in terms of U.  The fundamental equation is the first of four Gibbs equations 

we’ll see, each of which expresses the differential of a thermodynamic potential in terms of 

its fundamental variables. 

The equation for U shows that U is a function of S and V, i.e., U = U(S, V).  We can see 

this because in our fundamental relation S and V are the variables contained in the differentials.  

It can also be seen because S and V are the variables that are held constant when we use dU 

to predict spontaneity.  As such they are called natural variables.  It is possible to define U as a 

function of other variables, as we did earlier in defining U as a function of V and T, but as a 

consequence of our exploration of the second law, U allows us to predict spontaneity or 

equilibrium when S and V are held constant, and not when other variables are.  Because U is a 

function of S and V, the differential dU becomes  
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dU = ( U
S

) dS +( U
V

) dVV S
∂
∂

∂
∂

  

If we compare this to our fundamental relation we see that  

( U
S

) = T and ( U
V

) = -pV S
∂
∂

∂
∂

 

The first equation defines the temperature as the ratio of changes in energy and entropy in a closed 

volume.  You can see that by delving deeper into thermodynamics we are beginning to interrelate 

its fundamental quantities. 

The fact that the energy is an exact differential allows us to develop a new set of 

thermodynamic relations.  Remember that our test for an exact differential is that if we have a 

function df = a dx + b dy, then (∂a/∂y)x = (∂b/∂x)y.  Our fundamental equation is  

.dU pdV TdS= − +  

Since U is a state function, dU is an exact differential, and we can apply the equation for df to dU 

to get,  

 

( T
V

) = -( p
S

)S V
∂
∂

∂
∂

 

This equation is one of a group of relations called Maxwell relations.  It is not immediately 

obvious and cannot be derived from our other rules for the manipulation of partial derivatives.   

An alternative approach to deriving this Maxwell relation is as follows.  We've already 

shown that 

( U
S

) = T and ( U
V

) = -pV S
∂
∂

∂
∂

  

We know from our earlier discussion of partial derivatives that the mixed second derivatives, 
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( U
x y

) and ( U
y x

)
2 2∂

∂ ∂
∂
∂ ∂

 

are equal.  Therefore  

( U
V S

)= ( U
S V

) and ( T
V

) = -( p
S

)
2 2

S V
∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂

 

 Because dH, dA and dG are all also exact differentials, we can generate Maxwell relations 

for them as well.  Let’s start with the enthalpy. Q:  WHAT IS THE DEFINITION OF THE ENTHALPY? [ 

H = U + PV] Q:  WHAT IS THE DIFFERENTIAL OF H, DH? [dH = dU + d(pV)] If we substitute our 

fundamental equation for dU, and expand d(pV) we obtain dH = TdS - pdV + pdV + Vdp = TdS 

+ VdP.  This is the Gibbs equation for the change in enthalpy. Q: THIS TELLS US THAT H IS A 

FUNCTION OF WHICH VARIABLES?  [H = H(S,p)]  We write down our test for a perfect differential, 

yx

a bif df adx bdy then
y x

 ∂ ∂ = + =   ∂ ∂  
  

and recognize that since dH is a perfect differential we can write 

( T
p

) = ( V
S

)S p
∂
∂

∂
∂

, 

our second Maxwell relation.  Now let’s do the remaining two.  Q:  WHAT IS THE DEFINITION OF 

G? [G = H - TS = U + PV - TS]  Q:  WHAT IS THE DIFFERENTIAL OF G, DG?  [dG = dU + d(pV) - 

d(TS)] = TdS - pdV + pdV + Vdp - TdS - SdT and therefore, dG = VdP – SdT, the Gibbs equation 

for the Gibbs Free Energy.  The natural variables for G are therefore p and T since small changes 

in p and T lead to changes in G, i.e., G = G(p, T).  Q:  WHAT IS THE DIFFERENTIAL OF G(P,T)? 

dG = ( G
T

) dT +( G
p

) dpp T
∂
∂

∂
∂

 

If we compare this equation with our other equation for dG we find that (∂G/∂T)p = -S and (∂G/∂p)T 
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= V.  Q:  WHAT IS THE MAXWELL RELATION FOR G? 

( G
p T

)= ( G
T p

) or -( S
p

) = ( V
T

)
2 2

T p
∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂

 

Finally lets calculate the Maxwell relation for A.  Q:  WHAT IS THE DEFINITION OF A?   [A = U - 

TS]  WHAT IS THE DIFFERENTIAL OF A? [dA = dU - d(TS) = TdS - pdV - TdS - SdT and therefore 

dA = -pdV - SdT.]  Q:  WHAT ARE THE NATURAL VARIABLES OF A? [A = A(V,T)]  Q:  WHAT IS THE 

MAXWELL RELATION FOR A? [(∂p/∂T)V = (∂S/∂V)T.]  This yields us four Gibbs equations and four 

Maxwell relations.  The Gibbs equations are: 

dU pdV TdS= − +  

dH VdP TdS= +  

dA pdV SdT= − −  

dG Vdp SdT= −  

And the four Maxwell relations are: 

( T
V

) = -( p
S

)s V
∂
∂

∂
∂

 

( T
p

) = ( V
S

)S p
∂
∂

∂
∂

 

( p
T

) = ( S
V

)V T
∂
∂

∂
∂

 

( V
T

) = -( S
p

)p T
∂
∂

∂
∂

 

You can see that these last two of the Maxwell relations look particularly useful since they 

express the difficult to measure (∂S/∂V)T in terms of the easy to measure (∂p/∂T)V, and the difficult 



 
 

106 

to measure -(∂S/∂p)T in terms of the easy to measure (∂V/∂T)p.  These Maxwell relations are 

important enough that I would expect you to be able to easily derive them.  

While both the Gibbs equations and 

Maxwell relations are very useful, and 

fairly easy to derive, they are hard to 

remember.  There is a simple mnemonic 

device called the thermodynamic square 

which makes it very simple to remember 

the Maxwell relations and the Gibbs 

equations for the thermodynamic 

potentials.  To construct the 

thermodynamic square we draw a square.  At the top of the square we put A, the first of the 

thermodynamic potentials alphabetically, and then proceed both alphabetically and clockwise with 

the rest of the potentials. 

Now in the corners we put the 

variables common to the potentials on 

either side.  A and G are both functions of 

T, G and H are both functions of p, U and 

H are both functions of S and U and A are 

both functions of V.  Finally we draw an 

arrow from S to T and from p to V.   

We can use the square two ways, to 

 

 

A 

G 

H 

U 

P 

A 

G 

H 

U 

V T 

S 
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remember the Gibbs equations, the differential forms for changes in the potentials, and to 

remember the Maxwell relations.  To find the Gibbs equation for a potential, rotate the square until 

the potential you want to find is on the bottom of the square.  In this case we'll use H.  The 

differential form of a potential is the sum of two terms, each of which is a differential multiplied 

by another variable.  When we place a potential on the bottom of the square, the differential 

(independent) variables will be the ones flanking it.  For the example of dH, the differentials are 

dS and dp.  Each of these differentials is multiplied by the variable diagonally across from it.  Thus 

the two terms in dH are Vdp and TdS.  Now all we need are the signs of the two terms.  For the 

signs we just look at the direction of the arrows.  If the arrow connecting two variables points up, 

the sign on the term will be positive, and if the arrow connecting the two variables points down, 

the sign on the term will be negative.  The pV arrow points up so we have +pdV and the TS arrow 

points up so we have +TdS, which finally yields, dH = pdV + TdS.  

To do a different thermodynamic 

potential we just turn the thermodynamic 

square so the potential we are interested in 

is on the bottom.  Let’s use the square to 

get the differential of A.  First we turn the 

square so A is on the bottom.  The 

differential terms are dT and dV.  The two 

terms, pdV and SdT are both negative 

because for both of these the arrows point 

down.  Therefore dA = -pdV - SdT. 
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Let’s do one last example, dG.  

First we turn the square so that the G is on 

the bottom.  Q: Which variables are the 

differentials? [dp, dT]  Q:  What are the 

pairs of variables for the two terms? 

[VP,TS]  Therefore the two terms are VdP 

and SdT.  Q:  What is the sign for VdP? 

[Arrow up, +] Q:  What is the sign for SdT? 

[arrow down, -]  So dG = Vdp - SdT. 

Now let’s use the thermodynamic 

square to find Maxwell relations.  First let’s 

turn it right side up again.  You can see that 

the pV arrow makes a triangle with p,V and 

S.  The partial from this corner has the 

variables in the same positions, i.e., 

(∂V/∂S)p.  The other triangle from this 

orientation of the square is made with T, p 

and S, which gives us the partial (∂T/∂p)S.  

Once again the direction of the arrow gives the direction for each term.  Since both arrows go up 

both terms are positive.  So the Maxwell relation for this side is (∂V/∂S)p = (∂T/∂p)S.  To find other 

Maxwell relations just turn the square on its side.   
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 Let’s look at the Maxwell 

relation for the U side.  Once again, we turn 

our square so the potential of interest is on 

the bottom.  The first triangle is made by T, 

V and S.  Q:  WHAT IS THE CORRESPONDING 

PARTIAL? [(∂T/∂V)S] The second triangle is 

made by p, S, and V.  Q:  WHAT IS THE 

PARTIAL? [-(∂p/∂S)V.]  So this second 

Maxwell relation is (∂T/∂V)S = -(∂p/∂S)V 
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Lecture 18 

Let’s see how we might use these Maxwell relations.  Remember we said that for an ideal 

gas the energy is independent of volume at constant temperature.  This is equivalent to saying that 

( U
V

) = 0T
∂
∂

 for an ideal gas.  Let’s prove this, but instead of evaluating this directly for an ideal 

gas, let’s find an equation for ( U
V

)T
∂
∂

 which is true for any substance, and then apply that to the 

ideal gas law.  Such an equation is called a Thermodynamic Equation of State.  In developing a 

thermodynamic equation of state, we want to express ( U
V

)T
∂
∂

 in terms of our observables, p, V, T, 

S, n, α, κ, and Cp.  Before we start let’s write down our definitions for T, p, S and V.   

V S T p
U U G GT = ( p = -( V = ( S = -() ) ) )
S V p T

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 

Let’s try relating ( U
V

)T
∂
∂

 to temperature.  To do this we need to use a version of the chain rule of 

partial differentiation.   

( f
x

) = ( f
x

) +( f
y

) ( y
x

)z y x z
∂
∂

∂
∂

∂
∂

∂
∂

 

We are going to use this equation to find a starting point in our relation of ( U
V

)T
∂
∂

 to T.  We do 

this by first setting ( U
V

)T
∂
∂

 equal to 
z

f
x
∂ 

 ∂ 
which fixes the values of f, x and z in our new chain 

rule. This sets f, x and z equal to U = f, V = x, and T = z.  Since we’re relating this to temperature, 

V

U
S

∂ 
 ∂ 

, and since U and V are already fixed, 
V

U
S

∂ 
 ∂ 

has to be equal to 
x

f
y

 ∂
 ∂ 

  which means that 

S has to equal y.  This means that we can write 
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( U
V

) = ( U
V

) +( U
S

) ( S
V

)T S V T
∂
∂

∂
∂

∂
∂

∂
∂

 

Comparing this with our thermodynamic definitions of p and T we see that 

( U
V

) = -p+ T( S
V

)T T
∂
∂

∂
∂

 

Unfortunately, 
T

S
V
∂ 

 ∂ 
 is inconvenient to measure, and also means that to calculate the change of 

internal energy with volume we have to keep track of four variables, p, T, S and V.  It would be 

convenient if we could find a more useful equivalent of 
T

S
V
∂ 

 ∂ 
.  Examining our list of Maxwell 

relations we see that 
T

S
V
∂ 

 ∂ 
= 

V

p
T
∂ 

 ∂ 
, so this equation now becomes 

(
U
V

) = -p+ T(
p
T

)T V
∂
∂

∂
∂

 

an equation which relates the change of energy with volume to easily measured observable 

quantities. 

Earlier we had argued that 
T

U
V
∂ 

 ∂ 
= 0 for an ideal gas.  This conclusion was based on 

discussions of transfer of energy from kinetic energy, the energy of heat, to potential energy, as 

the molecules were separated against an external force.  It was a sensible argument, but by no 

means a proof.  With our result above we can prove this assertion.  We begin with 

( U
V

) = -p+ T( p
T

)T V
∂
∂

∂
∂

 

Since for an ideal gas p = nRT/V, this becomes 

( U
V

) = -p+ T( nR
V

)= -p+ p = 0T
∂
∂
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This simple result shows one of the strengths of thermodynamics.  It is able to obtain results that 

can either be applied generally, as in our thermodynamic equation, or be applied to specific models, 

as we have just done for the ideal gas law. 

Let’s use this equation to calculate the value of ( U
V

)T
∂
∂

 for a van der Waals gas.  Remember 

that for a van der Waals gas  

p = nRT
V - nb

- an
V

2

2  

Substituting into our equation for (∂U/∂V)T yields 

( U
V

) = -p+ T( p
T

) = -p+ nRT
V - nb

= - nRT
V - nb

+ an
V

- nRT
V - nb

= an
VT V

2

2

2

2

∂
∂

∂
∂

 

so we see that for a gas with any kind of real properties, the energy will change with volume at 

constant temperature.  We see also, that since the term which represents the effect of the attractive 

potential is the one which makes ( U
V

)T
∂
∂

 non zero, that it is indeed the presence of attractive forces 

that makes energy change when van der Waals gasses are expanded under constant temperature 

conditions. (Note that in real gases, the repulsive forces also contribute to ( U
V

)T
∂
∂

.  The fact that 

only attractive forces make a contribution to ( U
V

)T
∂
∂

 for van der Waals gases suggests that the van 

der Waals treatment of repulsive forces is not sophisticated enough.) 

Now that we've increased our arsenal for manipulating partial derivatives, let’s return to 

the Gibbs Free Energy.  Since we often want to control a chemical reaction by changing the 

ambient temperature, and the Gibbs Free Energy predicts spontaneity under chemically useful 

conditions, let’s look at the way ∆G changes with temperature.  Remember that 



 
 

113 

dG = ( G
T

) dT +( G
p

) dp = -SdT +Vdpp T
∂
∂

∂
∂

 

and therefore (∂G/∂T)p = - S.  This is a useful equation as long as we know the entropy of our 

system (and ideally, the entropy as a function of temperature).   

What if we don’t know the entropy?  We can derive a new relation that gives us a second 

way to calculate the change in Gibbs Free Energy with temperature.  Our definition of G was G = 

H - TS which can be rearranged to yield (G - H)/T = -S and therefore (∂G/∂T)p = (G - H)/T.  If we 

collect the G's on one side of the equation we get (∂G/∂T)p - G/T = -H/T.  This expression is 

difficult to integrate.  However, if we recognize that because of the product rule,  

( G
T

) - G
T

= T(
T

G
T

)p p
∂
∂

∂
∂

 

This becomes 

(
T

G
T

)= - H
T2

∂
∂

 

This is known as the Gibbs-Hemholtz equation and relates the enthalpy to the temperature 

dependence of G/T.  This is not a critically important equation, but the form can be useful for some 

types of calculations. Note that the forms 

p
G G - H( =)
T T
∂
∂

 

and 

p
G( = -S)
T
∂
∂

 

 are of equal importance.  The Gibbs-Hemholtz equation is particularly useful in calculating the 

change of ∆G for a process as the temperature changes.  In this case the equation becomes 
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(
T

G
T

)= - H
T2

∂
∂

∆ ∆
 

Note that to solve this equation for a new ΔG, we multiply both sides by T∂  to get  

2

G H T
T T
∆ ∆ ∂ = − ∂ 

 
 

We integrate the left side from 1

1

G
T
∆  to 2

2

G
T
∆  and the right side from T1 to T2 to obtain 

2

1

2 1
2

2 1

T

T

G G H T
T T T
∆ ∆ ∆

− = − ∂∫  . 

Let’s look now at how the Gibbs function varies with pressure.  We begin with our 

differential of G, dG = Vdp - SdT.  If we change pressure at constant T from p1 to p2 we get 

dG Vdp=∫ ∫ , 

and therefore, 

2

1

p
f i p
= + VdpG G ∫   

For liquids and solids, V is almost constant so this can be approximated as 

f iG G V p= + ∆  

when Δp is not large (ca 10s or 100s of bar) or for molar quantities, 

f iG G V p= + ∆ . 

For cases where Δp is large, we use 1

T

V
V p

κ
 ∂

= −  ∂ 
 to tell use the p dependence of the volume. 

 For gases, V  is strongly dependent on pressure so we cannot take it out of the integral even 

when the pressure changes are moderate.  For an ideal gas we have 
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ln f
f i i

i

pRT= + dp = + RT .G G Gp p∫  

This equation is important in showing the pressure dependence of the Gibbs Function, but is 

particularly important in the way it allows us to begin to relate G to chemical equilibria.   

Before we can develop relationships involving equilibria, we have to introduce a new 

concept, that of the chemical potential, µ.  The concept of the chemical potential, µ, is developed 

in the following way.  Remember that in our earliest discussions of energy we talked about 

extensive properties, properties whose values depend on the amount of material.  Energy is one 

example of an extensive variable.  This should make basic sense.  For example, 2 gallons of 

gasoline will take you twice as far as 1 gallon of gasoline, and therefore will do twice as much 

work.  Up to now we've only considered thermodynamic processes in which mole number is 

constant, in other words, closed systems. For these processes we've said that U = U(S,V).  If we 

allow mass transfer, i.e., if we consider open systems, the mole number affects the energy as 

well.  In this case we have to write U = U(S,V,n).  If we had a system with two chemical 

components, then U will depend on the mole number of each of them and U = U(S,V,n1,n2).  For 

a system of j components this becomes U = U(S,V,n1,n2,...,nj). 

When we wanted to describe the change in energy for a system with no mass transfer, we 

wrote down the differential, 

dU = ( U
S

) dS +( U
V

) dVV S
∂
∂

∂
∂

 

where we have already shown that (∂U/∂S)V = T and (∂U/∂V)S = -p.  For a one component system 

in which we consider mass transfer this becomes  

dU = ( U
S

) dS +( U
V

) dV +( U
n

) dnV,n S,n S,V
∂
∂

∂
∂

∂
∂
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We call (∂U/∂n)S,V, the change in energy with mole number, the chemical potential, µ.  We 

can thus write dU = TdS - pdV + µdn.  For a j component system this becomes 

dU = TdS - pdV + dn + dn +...+ dn1 1 2 v j jµ µ µ , 

where 

j
j

U
n

∂µ
∂

 
=   
 

 

Remember that G is defined by G = H - TS = U + PV - TS.  Substituting our explicit equation for 

dU we get 

dG SdT Vdp dnj j
j

= − + +∑µ  

This means that we can now define the chemical potential in terms of the free energy: 

, , j i

i
i T p n

G
n

µ
≠

 ∂
=  ∂ 

. 

This is the most common definition of the chemical potential.  As we will discuss in more detail 

later, for a given extensive quantity Y in a system of more than one chemical species, partial 

derivatives of the form 

i
i

YY
n

 ∂
=  ∂ 

 

are called partial molar quantities.  Thus, the chemical potential of the ith component of a 

mixture is the partial molar free energy of that component, i.e. 

µ i iG= . 

Qualitatively, the chemical potential is the change in free energy of a system when a mole of the 

substance is added to a mixture of a given composition at a given temperature and pressure.  
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Thus, the chemical potential is a function of the composition, temperature and pressure, i.e., 

1 2( , , , ,..., )i i jT p n n nµ µ= , 

where the nis represents the mole number of each of the components in the mixture. 

 An interesting line of reasoning that follows from these definitions is that if the chemical 

potential is the partial molar free energy of a component in a mixture, that we could figure out 

the free energy G for a given component by multiplying the chemical potential of the component 

by its mole number, i.e., 

G n n Gi i i i i= =µ , 

and the free energy G for the whole mixture by adding up the free energies of all the 

components, 

G G ni
i

i
i

i= =∑ ∑µ . 

This is an exciting result.  In a system in which mass can be transferred, the Gibbs free energy 

is the sum of the products of the chemical potentials of the components of the system with 

their mole numbers.  

Let’s look at this definition for a one component system again.  We have 
,p T

G
n

µ ∂ =  ∂ 
.  

We can write G nG= .  Therefore for a one component system we have 
( )

,p T

nG
G

n
µ

 ∂
 = =
 ∂ 

, and 

we see that for a one component system the chemical potential is equal to the molar Gibbs Free 

Energy.   

As is our habit, let’s begin our investigation of the chemical potential by considering the 

case of an ideal gas.  First though, we'll use our result on the pressure dependence of the free 
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energy to relate ∆G°, the Standard Gibbs function, to ∆G at other pressures.  For ideal gases and 

other gases, we can use p, easily measured, as a measure of n since for an ideal gas we have 

nRTp
V

=  and for a real gas n and p are related by 21 ...nRT Bn Cnp
V V V

 = + + + 
 

, while for mixtures 

of real gases p and n are related by 

1

i
i in

j
j

np p pX
n

=

= =

∑
. 

The ∆G's usually available in reference books are standard molar Gibbs free energies,  

0
G∆ .  If we want to estimate ∆G at some other pressure, we just use the ideal gas results we've 

obtained for the pressure dependence of ∆G, 
0

0( ) ln pG p G RT
p

∆ = ∆ + .  But for a one component 

system, G∆  is µ so this becomes ( ) 0
0ln pp RT

p
µ µ= + .  This relation of µ to G leads us to the 

one component version of the Gibbs-Duhem equation.  Since dG Vdp SdT= −  and 

G V SdG d dp dT
n n n

 = = − 
 

, we can write V Sd dp dT
n n

µ = − . 
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Lecture 19 

Having developed a substantial arsenal of thermodynamic functions, I'd like to return to 

the subject of thermodynamic equations of state.  When I was an undergraduate, deriving these 

equations was the greatest pain of anything I was asked to do in P-Chem.  When I got to grad 

school though, I was taught a simple sequence of steps that made most of these derivations simple.  

I'd like to share this with you to spare you some of the frustration that I went through. 

A key concept is that most of the things we might want to measure or calculate in 

thermodynamics can be or must be expressed as a partial derivative.  The algorithm I'm going to 

teach you is for reduction of any partial derivative to a function of S, V, p, T, α, κT and pC , all of 

which are either easy to measure or commonly tabulated.  The algorithm consists of the following 

sequence of steps. 

Step 1) Eliminate the potentials from the partial derivative (i.e. U, H, G, A) 

a) Bring to numerator 

b) Eliminate by using Gibbs equations (the differentials of H, U, etc.) from the 

thermodynamic square. 

Examples 

A) Eliminate the potential from the partial derivative 
p

T
H
∂ 

 ∂ 
  

In this case, the potential, H, is in the denominator of our derivative, so we the tool we need to use 

to bring it to the numerator is the inverter, so 

( T
H

) 1

( H
T

)
p

p

∂
∂

=
∂
∂
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Now we eliminate the potential by substituting the Gibbs equation for dH, dH = TdS + VdP  

( T
H

) 1

( TdS +Vdp
dT

)

1

T( S
T

) +V( p
T

)
p

p p p

∂
∂

= =
∂
∂

∂
∂

 

B)  Eliminate the potential from 
H

T
p

 ∂
 ∂ 

.  In this case, the potential is being held constant.  In cases 

like this the tools that we use to bring the potential into the numerator is the cyclic rule, followed 

by the inverter:   

( T
p

) = - 1

( p
H

) ( H
T

)
=

-( H
p

)

( H
T

)
H

T p

T

p

∂
∂ ∂

∂
∂
∂

∂
∂
∂
∂

  

and now proceed as in our first example.   

Step 2) Eliminate µ 

a) Bring it to the numerator 

b) Eliminate it using the Gibbs-Duhem equation, d = - S
n

dT + V
n

dpµ  

Example:   

(
V

) (
- S

n
dT + V

n
dP

dV
) - S

n
( T

V
) + V

n
( p

V
)S,n S,n S,n S,n

∂
∂

= =
∂
∂

∂
∂

µ  

Step 3) Eliminate S from the partial derivative 

a) Bring it to the numerator 

b) Use a Maxwell relation if possible 

c) Use the chain rule to insert ∂T under ∂S, and replace by the appropriate heat 

capacity. 
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Examples 

A. (∂T/∂p)S,n.  We use the Euler cyclic rule to bring S to the numerator. 

( T
p

) = - 1

( p
S

) ( S
T

)
=

-( S
p

)

( S
T

)
S

T p

T

p

∂
∂ ∂

∂
∂
∂

∂
∂
∂
∂

 

We can use a Maxwell relation to obtain 

( T
p

) = -( V
T

) / ( S
T

)S p p
∂
∂

∂
∂

∂
∂

 

Now (∂S/∂T)p can be related to Cp by Cp = T(∂S/∂T)p since qp = TdS at constant p.  Similarly we 

can show that Cv = T(∂S/∂T)V.  So finally we obtain,  

( T
p

) = -( V
T

) / 1
T CS p p

∂
∂

∂
∂

  

For our second example, let’s look at a case where we insert ∂T under ∂S.  When will we have to 

do this?  When we can't find a Maxwell relation that fits! 

( S
p

) = ( S
T

) ( T
p

) = 1
T C ( T

p
)V V V V V

∂
∂

∂
∂

∂
∂

∂
∂

 

Step 4) Bring V to numerator, then use 

a) (∂V/∂T)p = Vα 

b) (∂V/∂p)T = -VκT 

Example: (∂T/∂p)V = ?  Q: What do we use to move V into the numerator? [Euler cyclic rule] 
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T
T T

V

T p p

V-( )
T -1 - Vp( = = = =) p V Vp -V( ( () ) )

V T T

κ κ
α α

∂
∂ ∂

∂ ∂ ∂∂
∂ ∂ ∂

 

And finally  

Step 5) Get rid of Cv using Cp = Cv + TVα2/κT. 

Now let’s do a multistep example.  Let’s calculate the change of temperature with pressure 

under conditions of constant entropy, (∂T/∂p)S.  Since there are neither thermodynamic potentials 

nor a chemical potential in this partial, we can move directly to step three.  First we use the cyclic 

rule: 

1
T ps

T p S
p S T

 ∂ ∂ ∂    = −     ∂ ∂ ∂    
 

which yields 

1

S

T p

T
p Sp
S T

 ∂ −
=  ∂ ∂∂         ∂ ∂   

 

Now we bring S to the numerator using the inverter. 

T

S

p

S
pT =

Sp
T

 ∂
− ∂ ∂  

  ∂∂     ∂ 

 

The lower term is simply Cp/T so we now have 

T

pS

ST
pT

p C

 ∂
−  ∂ ∂  = ∂ 

 

Looking at our thermodynamic square we find a Maxwell Relation 
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pT

S V
p T

 ∂ ∂ − =   ∂ ∂  
, 

which when inserted into our equation yields 

p

pS

VT
TT

p C

∂ 
 ∂ ∂  

= ∂ 
 

Noting that our partial derivative is equal to Vα, we get as our final result 

pS

T TV
p C

α ∂
= ∂ 

 

As a second example let’s use the same method to calculate the change in energy for a real 

gas during an isothermal compression, dU = (∂U/∂p)T,ndp.  For this calculation we need to 

eliminate (∂U/∂p)T,n.  First we eliminate dU using dU = TdS - pdV. 

( U
p

) = ( T S - p V
p

) = T( S
p

) - p( V
p

)T T T T
∂
∂

∂ ∂
∂

∂
∂

∂
∂

 

Now we eliminate ∂S.  First we turn to the thermodynamic square to get (∂S/∂p)T = -(∂V/∂T)p, so 

( U
p

) = -T( V
T

) - p( V
p

) = -TV + p VT p T T
∂
∂

∂
∂

∂
∂

α κ  

 This simple result is an example of the power of thermodynamics.  In order to obtain our 

earlier result about the isothermal change of energy for an ideal gas, dU = Cv dT, we had to make 

certain assumptions about the gas, i.e., that there were no intermolecular potentials and that 

therefore ( U
V

)T
∂
∂

 = 0.  But here we have a completely general result with no reference to a model 

for the structure of our system and no approximations. 

 As a final example lets derive the result we use in step 5, 
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C C TV
p v− =

α
κ

2

. 

This is a more challenging reduction of partial derivatives since our algorithm by itself is not 

enough – attempts to solve this problem by using the algorithm alone simply yield the equation 

C C C Cp v p v− = − . 

We start simply enough using the definitions of Cp and Cv, 

v
p v

p

H UC C
T T

∂ ∂   − = −   ∂ ∂   
. 

We now proceed by expressing H in terms of U using the definition 

H U pV= + . 

( )

( )

p v
Vp

p Vp

p p V

U pV UC C
T T

pVU U
T T T

U V Up
T T T

∂ +  ∂ − = −   ∂ ∂  

∂ ∂ ∂   = + −    ∂ ∂ ∂    

∂ ∂ ∂     = + −     ∂ ∂ ∂     

 

It is at this point that our algorithm fails.  When we run into a roadblock of this sort, the solution 

is to try a different approach.  The only one of our tools for manipulating partial derivatives that 

is not used in our algorithm is the chain rule for partial differentiation.  We use it here to relate 

the partials 
p V

U Uand
T T

∂ ∂   
   ∂ ∂   

. 

Remember that our chain rule for partial differentials is 

2 2 2 1 2

1 2

1 1 1 2 1x y x y x

y yf f f
x y x y x

         ∂ ∂∂ ∂ ∂
= +         ∂ ∂ ∂ ∂ ∂         

. 
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If we choose 
p

U
T

∂ 
 ∂ 

to be 
21 x

f
x

 ∂
 ∂ 

and 
V

U
T

∂ 
 ∂ 

 to be 
21 y

f
y

 ∂
 ∂ 

, this fixes all our variables, with f 

= U, x1 = T, x2 = p, y1 = T and y2 = V.  Plugging these into the chain rule we get 

p V p T p

V T p

U U T U V
T T T V T

U U V
T V T

∂ ∂ ∂ ∂ ∂         = +         ∂ ∂ ∂ ∂ ∂         

∂ ∂ ∂     = +     ∂ ∂ ∂     

 

Substituting this into our equation for Cp-CV we get  

p v
V T p p V

T p p

T p

U U V V UC C p
T V T T T

U V Vp
V T T

U Vp
V T

∂ ∂ ∂ ∂ ∂         − = + + −         ∂ ∂ ∂ ∂ ∂         

∂ ∂ ∂     = +     ∂ ∂ ∂     

 ∂ ∂   = +    ∂ ∂    

 

We now proceed as usual with our algorithm, substituting the Gibbs equation for U, and yielding 

p v
T p

T p

T p

pdV TdS VC C p
V T

dS Vp T p
V T

dS VT
V T

 − + ∂   − = +    ∂ ∂    

  ∂   = − + +    ∂ ∂    
∂   =    ∂ ∂   

 

We next get rid of S.  We look at our thermodynamic square and find that we have a useful 

Maxwell relation 

T V

S p
V T
∂ ∂   =   ∂ ∂   

. 

Substituting this in our equation yields 
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p V
V p

dp VC C T
T T

∂   − =    ∂ ∂   
 

We now move the V into the numerator using the cyclic rule. 

1
p V

p

p T

p

p

T

VC C T
TT V

V p

V
T VT

TV
p

− ∂ − =  ∂ ∂ ∂   
   ∂ ∂   

∂ − ∂ ∂   =  ∂ ∂  
 ∂ 

 

Finally, using the relations 
p

V V
T

α∂  = ∂ 
 and 

T

V V
p

κ
 ∂

− = ∂ 
, we get 

C C TV
p V− =

α
κ

2
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Lecture 20 

Let’s return now to our discussion of the chemical potential.  We showed that for a perfect 

gas, 0
0ln pRT

p
µ µ= + .  However, if, as we want, we relate µ to real chemical systems, we will 

have to deal with real gases.  We could deal with this situation by going back to our definition of 

µ for a one component system, Gµ = , and recalculate its pressure dependence by inserting the 

virial equation, 

f

i

p

f i p
- = VdpG G ∫  

2RTV = (1+ B p+C )p
p

′ ′  

 and integrating to yield 

0 0 0 0
0ln 22

f
1 p CG = G + RT ( + B +C p)dp = G + RT( + B (p - )+ ( - ))p p pp 2p

′
′ ′ ′∫  

which gives us for µ for a real gas,  

00 0
0ln ...22p C= + RT( + B (p - )+ ( - ) )p p p2p

µ µ
′

′ +  

This equation is far more accurate for real gases than our ideal gas version, but it has the 

disadvantage that it is awkward to handle with all its terms, and that we need a set of coefficients 

not just for each gas, but for each gas at each temperature.  These considerations led G.N. Lewis 

to suggest the following equation for the pressure dependence of µ for real gases:  

 0
0ln fRT

p
µ µ= + , 

where f is called the fugacity and has units of pressure.  Remember that for an ideal gas, the term 
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RT ln p/p0 comes from integration of Vdp∫ .  Replacing the pressure with the fugacity is a 

reflection that the pressure dependence of the volume for a real gas is different than that for an 

ideal gas.   

Fugacity is related to pressure by the definition f = γp, where γ is called the fugacity 

coefficient, is a function of p and T, and is different for each substance.  As with any real gas 

property, we want the fugacity to reduce to the pressure in the limit of low pressure, since real 

gases behave like ideal gases in the limit of low pressure, i.e., 

lim
p

f p
→

=
0

 

Since f = γp, we can also say, 

lim
p→

=
0

1γ . 

It is important to note that like the virial coefficients that we use to calculate the p, V, T dependence 

of real gases, the fugacity coefficient is an empirical quantity, which has to be measured or 

calculated from other empirical quantities.  To see how we can calculate this let’s insert our 

definition of fugacity into our equation for µ as a function of p. 

0 0 0
0 0 0ln ln ln lnf p p= + RT = + RT = + RT + RT

p p p
γµ µ γµ µ  

It is interesting to note here that in this last form, our first two terms are the same as our expression 

for the chemical potential of an ideal gas.  Remember that an ideal gas is distinguished from a real 

gas because its intermolecular forces are negligible.  Since our expression for µ for a real gas is 

identical to the expression for an ideal gas except for the term RT ln γ, RT ln γ must contain all the 

information about the effect of the intermolecular forces of a substance on the chemical potential. 

To calculate the value of γ, we begin with d dG Vdpµ = =  (constant T).  Then 
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0 0'

'' ln ln ln
'

p

mp

f f fV dp RT RT RT
p p f

µ µ= − = − =∫  

For a perfect gas the difference between µ at two different pressures is 

0 0 0'

'
ln

'
p

mp

pV dp RT
p

µ µ= − =∫  

where here the superscript o indicates an ideal gas.  If we subtract the ideal gas value from the real 

gas value we will get 

'
ln ln

p o
m mp

f p( - )dp = RT[ - ]V V f p′ ′∫  

which rearranges to 

'

'ln
'

p o
m mp

fp 1( )= ( - )dpV Vf p RT ∫ . 

We can simplify this equation by taking its limit as p'→ 0 and noting that  

lim ' '
'p

f p
→

=
0

 

Therefore in the limit of low pressures, our equation becomes 

0
ln

p o
m m

f 1( )= ( - )dpV Vp RT ∫  

But f = γp so this becomes 

0
ln

p o
m m

1= ( - )dpV VRT
γ ∫  

For an ideal gas Vm = RT/p.  Now remember we defined a property of gases called the compression 

factor Z, where Z = pVm/RT.  For ideal gases Z = 1, but for real gases we can write Vm = RTZ/p.  

Therefore, we can write 

0 0
ln

p p1 RTZ RT Z -1= ( - )dp = ( )dp
RT p p p

γ ∫ ∫ . 
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Note that if we return to our virial description of a real gas we have  

Z = pV
RT

= (1+ B p+ C p +... )m 2′ ′ , 

so 

1
20

ln
p 2= (B +C p+...)dp = B p+ C +...pγ ′ ′ ′ ′∫ . 

This result is consistent with our understanding of ln γ as the component of the fugacity 

corresponding to the intermolecular forces. 

Now let’s look at the implications of this result.  Our equation for the chemical potential 

of a real gas is 

0
0ln lnp= + RT + RT

p
µ γµ  

The first two terms correspond to the chemical potential of an ideal gas so this third term with ln 

γ will tell us how the real gas differs from an ideal gas.  Since our equation for γ is in terms of the 

compression factor lets remind ourselves how the compression factor varies with pressure.   

 

 

 

 

 

At pressures close to 0, the compression factor is close to the ideal gas value of one.  As 

we increase the pressure, the attractive forces come into play and z drops below one.  For most 

gases, at pressures somewhere between 200 and 400 atm, the repulsive forces begin to dominate 

and z becomes greater than one. 
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We see from this that at pressures less than 200 atm, since Z<1, RT ln γ is less than one 

and therefore µreal < µideal.  If we have a gas at high pressure, where the repulsive forces dominate 

and Z > 1, ln γ > 0 and therefore at high pressures µreal > µideal. 
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